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Abstract
DNAX accessory protein-1 (DNAM-1, CD226) is a co-stimulatory and adhesion molecule

expressed mainly by natural killer cells and T cells. DNAM-1 and its two ligands CD112 and

CD155 are important in graft-versus-host disease, but their role in solid organ transplanta-

tion is largely unknown. We investigated the relevance of this pathway in a mouse kidney

transplantation model. CD112 and CD155 are constitutively expressed on renal tubular

cells and strongly upregulated in acutely rejected renal allografts. In vitro DNAM-1 blockade

during allogeneic priming reduced the allospecific T cell response but not the allospecific

cytotoxicity against renal tubular epithelial cells. Accordingly, absence of DNAM-1 in recipi-

ent mice or absence of CD112 or CD155 in the kidney allograft did not significantly influence

renal function and severity of rejection after transplantation, but led to a higher incidence of

infarcts in CD112 and CD155 deficient kidney allografts. Thus, DNAM-1 blockade is not

effective in preventing transplant rejection. Despite of being highly expressed, CD112 and

CD155 do not appear to play a major immunogenic role in kidney transplantation. Consider-

ing the high incidence of renal infarcts in CD112 and CD155 deficient grafts, blocking these

molecules might be detrimental.

Introduction
Antigen recognition via the T cell receptor is not sufficient for a complete T cell activation. A
collection of costimulatory and coinhibitory signals modulates the complex interaction
between T cells and antigen presenting cells (APCs) in the process of T cell priming and
between T cells and target cells in the effector phase of the immune response [1, 2]. Because of
the fundamental role of T cell costimulation in the activation of donor reactive T cells after
transplantation, costimulation blockade has become a promising target for the development of
more specific and less toxic strategies to prevent rejection and induce tolerance [3]. Latest
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developments in clinical studies focused on the classical costimulatory molecules B7 and
CD40, but additional costimulatory receptors attracted attention as potential targets.

DNAX accessory molecule-1 (DNAM-1, CD226) has first been described in the 1990s as an
adhesion molecule of the immunoglobulin (Ig)-family [4], expressed mainly on T cells and nat-
ural killer cells [5]. DNAM-1 participates in proliferation and differentiation of CD4 T cells [6,
7], and particularly in priming and cytotoxic activity of CD8 T cells against non-professional
APCs, such as tumor cells [8, 9]. Moreover, DNAM-1 ligation is important for function and
differentiation of natural killer cells [10, 11] and mediates platelet adhesion to endothelial cells
in particular conditions [12]. DNAM-1 has two known ligands CD155 (Necl-5, PVR) and
CD112 (nectin-2) (Fig 1). Both molecules belong to the nectin-family of cell adhesion mole-
cules and are expressed on a variety of epithelial, endothelial, and antigen presenting cells [9,
13–15]. CD155 has a higher affinity to DNAM-1 than CD112 [5, 16]. Both DNAM-1 ligands
also bind to T cell Ig and ITIM domain (TIGIT, Vstm3) (Fig 1) [17]. TIGIT belongs to the Ig-
family and acts as a coinhibitory receptor on natural killer and T cells [17–19]. An additional
player in this complex network is CD96 (TACTILE), which is expressed on T cells and natural
killer cells and binds to CD155 and also acts as a co-inhibitory molecule [10, 20].

The absence of DNAM-1 on donor cells reduced graft versus host disease after bone marrow
transplantation [21, 22], but the relevance of this pathway in solid organ transplantation is
largely unknown. In this study we investigated the role of DNAM-1 and both of its ligands for
allospecific T cell priming and cytotoxicity against renal tubular epithelial cells (rTECs) in vitro
and in a mouse kidney allotransplantation model.

Materials and Methods

Mice
C57BL/6 (B6, H-2b), CBA (H-2k), BALB/c (H-2d), DBA/2 (H-2d), B6.C-H2-Kbm1/By (bm1, H-
2bm1), CD155 KO (H-2d) [23], CD112 KO (H-2b) [24] and DNAM-1 KO (H-2d) mice were
bred and housed in specific pathogen-free conditions at the University of Zurich and at Han-
nover Medical School. Bm1 mice express the same H-2 haplotype as B6 (H-2b) except for 7
nucleotide differences in the gene for H-2Kb resulting in amino acid substitutions at codons
152 (glutamate to alanine), 155 (arginine to tyrosine) and 156 (leucine to tyrosine) [25]. All
animal experiments (including the number of mice, the methods of surgery and anesthesia and
the post operative care schedule) were performed according to protocols approved by the legal
authorities (Veterinary Office of the Canton of Zurich). The mice were euthanized by CO2

inhalation. Since the transgenic mice were available on different genetic backgrounds, different
strain combinations were used. In each experiment the appropriate control group in the same
strain combination was included.

Culture of renal tubular epithelial cells (rTECs)
Preparation and primary culture of rTECs was performed as previously described [26]. Cells
were cultured on collagen coated dishes in K1 media. In all cytotoxicity experiments primary
rTECs were stimulated for 48 hours with murine interferon-β (IFN-β) and IFN-γ at 100 U/ml
each (Antigenix America Inc., Huntignton Station, NY, USA), prior to use.

T cell proliferation and cell-mediated lympholysis (CML) assay
T cell proliferation and CML assays were performed using either whole spleen or isolated CD4
and CD8 positive T cells as responders. Splenocytes were sorted by magnetic cell separation
(MACS) according to the protocols of Miltenyi Biotec (Bergisch Gladbach, Germany). Purity
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of sorted cells was confirmed by FACS analysis. Purity of T cell subpopulations was usually
>90%. T cells were stimulated with irradiated (30 Gy) splenocytes from allogeneic and synge-
neic mice.

T cell proliferation was measured by incorporation of tritium-labeled thymidine (Perkin
Elmer, Waltham, USA) on day 4 of culture. CML assays were performed on day 5 of culture:
51Chromium (Cr)-labeled, IFN-stimulated allogeneic rTECs were added to the serially diluted
culture for 4 hours (killing phase), and allospecific cytotoxicity was assessed by measurement
of 51Cr release in the supernatant. Allospecific lysis was calculated as: % specific lysis = (experi-
mental release—spontaneous release) / (total release—spontaneous release) � 100.

In some assays blocking antibodies against mouse DNAM-1 (3B3, [5]) or CD112 (6B3,
[27]) or the respective isotype controls were added to the culture.

Fluorescence activated cell sorting (FACS) and cytokine quantification
FACS was performed with a BD-FACSCanto II (Becton Dickinson, Allschwil, Switzerland).
Anti-mouse CD3-FITC, CD4-PE, CD8-APC, anti-rat-IgG-FITC, and propidium iodide (PI)
were purchased from eBioscience (Frankfurt, Germany). Rat anti-mouse CD155 was pur-
chased from Biolegend (Fell, Germany) and rat anti-mouse CD112 from Santa Cruz Biotech-
nology (Heidelberg, Germany). IFN-γ in cell culture supernatants was quantified using a
Ready-Set-Go!1 ELISA kit purchased from eBioscience (Frankfurt, Germany) according to the
manufacturer’s manual.

mRNA isolation and quantitative PCR
mRNA was isolated from kidney grafts or naïve kidneys stored in RNase-inhibitor using the
RNeasy Mini Kit (Qiagen, Hombrechtikon, Switzerland) according to manufacturer’s instruc-
tions. mRNA (1 μg) was transcribed to cDNA using the Omniscript reverse transcription Kit
(Qiagen, Hombrechtikon, Switzerland) according to manufacturer’s instructions. Pre-devel-
oped TaqMan reagents were used for quantitative PCR (Applied Biosystems, Carlsbad, CA,

Fig 1. DNAM-1 and its two ligands. Schematic illustration of the DNAM-1 pathway in the interaction
between a T cell and an antigen presenting cell (APC). The T cell recognizes its cognate antigen in the
context of MHC with its T cell receptor (TCR). For further activation it needs costimulatory signals, which can
be delivered via DNAM-1 (CD226) binding to its two ligands CD155 and CD112 expressed on the APC.
CD155 and CD112 also bind TIGIT, a co-inhibitory receptor of the Ig-family. CD155 has an additional
receptor called CD96.

doi:10.1371/journal.pone.0147951.g001
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USA) detecting murine CD155 and CD112, and the reference 18s rRNA. The expression of
candidate genes was normalized to the reference and fold changes were calculated in relation
to the matching controls using the 2^-ddCt method.

Skin and kidney grafting
For skin transplantations, recipient mice were anesthetized with ketamine/xylazine, pain
treated with carprofen (NSAID) and shaved. At day 0 full thickness tail skin (about 0.5–1.0
cm2) from donor mice was transplanted to the dorsal flank area of recipient mice. After surgery
the general conditions of the mice and the skin graft were monitored daily. Graft rejection was
defined as graft necrosis>90% of the graft. Kidney transplantation was performed as described
previously [28].

Histology and immunohistochemistry
Histologic examination of all kidney grafts was performed by an experienced renal pathologist
blinded to the experimental procedures. Tissues were immersion-fixed in 4% phosphate-buff-
ered formalin and embedded in paraffin. The thickness of sections was 4 μm. The slides were
routinely stained with hematoxylin and eosin (H&E), periodic acid-Schiff-reaction (PAS), and
Elastica-van Gieson stain. To quantify the amount of necrotic area in renal allografts H & E
stained slides were scanned using the Nanozoomer scanner (Hammatsu, Hammatsu City,
Japan) at a resolution of 0.23 μm. The necrotic areas were then quantified using NDPView soft-
ware (Hammatsu, Hammatsu City, Japan). For detection of apoptotic cells by immunohis-
tochemistry the monoclonal antibody F7-26 (Chemicon, International, Inc. Temecula, CA,
USA) was used as previously described [29]. Dense, apoptotic nuclei positive for single
stranded DNA were quantified in mouse renal allografts in 15 high power fields (original mag-
nification ×250).

For detection of CD155 by immunohistochemistry a rabbit polyclonal antibody against
murine CD155 purchased from Biorbyt (Cambridge, UK). Immunohistochemistry was per-
formed as previously described [30].

Statistical analysis
All statistical comparisons were performed with GraphPad Prism 4. Groups were compared
using Student’s t test or Mann-Whitney test. P< 0.05 was considered as significant.

Results

CD112 and CD155 are expressed in renal allografts
To assess expression of the two DNAM-1-ligands CD155 and CD112 in renal tissue we first
analyzed primary renal tubular epithelial cells (rTECS) isolated from B6 mice and cultured in
vitro. FACS analysis revealed a constitutive expression of both molecules on primary rTECs
and their up-regulation in response to pro-inflammatory cytokines such as IFN-β and IFN-γ
(Fig 2A). For a more detailed analysis of the CD112 and CD155 expression after transplanta-
tion B6 derived kidney grafts were transplanted into B6 recipients (syngeneic) or into fully
MHCmismatched CBA recipients (allogeneic). The kidney grafts were harvested one week
after transplantation. Quantitative RT-PCR of whole renal tissue indicated a modest up-regula-
tion of mRNA coding for both CD112 and CD155 in syngeneic grafts compared to naïve kid-
neys (CD112: 1.52 fold increase, n = 5, p = 0.03; CD155: 1.42 fold increase, n = 5, p = 0.06).
The expression of CD112 and CD155 was markedly increased in allografts (CD112: 3.4 fold
increase, n = 5, p = 0.08; CD155: 3.1 fold increase, n = 5, p = 0.14; see Fig 2B for differences
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between syn and allo). Interestingly, we observed a close correlation of CD155 and CD112
expression suggesting a similar regulation for both genes that lie directly adjacent to each other
in the genome (Fig 2C). The exact localization of CD155 expression in renal grafts was investi-
gated by immunohistochemistry. CD155 was expressed on tubular epithelial cells in both

Fig 2. Renal tubular epithelial cells express CD112 and CD155. (A) Primary B6-derived rTECs were left untreated or stimulated with IFN-β and -γ (100 U/
ml each) for 48 hours. Surface expression of CD155 and CD112 was analyzed by FACS. Shaded: isotype control, dotted line: unstimulated, solid line:
stimulated. A representative result of 4 independent experiments is shown. (B-F) Renal allografts from B6 to fully MHC-mismatched CBA recipients were
performed. B6 to B6 syngeneic renal grafts were performed as control. In each group we included at least 5 mice. (B) Real time-PCR for CD155 and CD112
was performed on naïve kidneys and renal syn- and allografts. The fold upregulation of CD112 and CD155 compared to naïve renal tissue is depicted.
Groups were compared using the Mann-Whitney-test: * P = 0.016, ns = not significant. (C) The expression of CD155 and CD112 in this group of grafts highly
correlated (P<0.001). (D-F) Immunohistochemical staining for CD155 was performed. (D) An overview shows the tubular expression of CD155 in both syn-
and allografts (arrows, scale bar 200 μm). (E) The expression of CD155 is located mainly in the medulla in syngrafts and is increased in the cortical area in
allografts. (F) The papillae of syngrafts show no staining for CD155, whereas in allografts tubuli in the papillae exhibit strong CD155 staining (scale bar
200 μm).

doi:10.1371/journal.pone.0147951.g002
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syngeneic and allogeneic grafts (Fig 2D). The expression of CD155 on tubular cells in syngeneic
grafts was concentrated in the medullary region (Fig 2E). In contrast, in allografts CD155
expression was also detected in the cortical region (Fig 2E). Finally, collecting ducts in the
papillae of syngeneic grafts did not express CD155 at all, whereas in allografts papillary tubules
presented intense staining (Fig 2F). We did not detect an intense endothelial staining in any
part of the kidney. Thus, CD112 and CD155 are constitutively expressed in rTECS and their
expression increases after transplantation. The functional role of DNAM-1 and its ligands in
kidney transplantation was further investigated in vitro.

DNAM-1 blockade inhibits T cell priming independently of CD155/
CD112 in vitro
To analyze the role of the DNAM-1 pathway for T cell priming after transplantation, isolated
naive T cells were stimulated with allogeneic splenocytes in the presence or absence of an anti-
body blocking DNAM-1 (3B3). Allospecific T cell proliferation was modestly but significantly
reduced under DNAM-1 blockade when using CD8 or CD4 T cells alone or in combination as
responder cells (Fig 3A). In the same experimental setting, IFN-γ production was suppressed,
when DNAM-1 was blocked (Fig 3B). Furthermore, allospecific cytotoxicity against rTECs was
markedly reduced, when T cells were primed in the presence of the DNAM-1 blocking anti-
body (Fig 3C).

To systematically elucidate the role of the DNAM-1-ligands CD112 and CD155 on T cell
priming, wild type T cells were stimulated by splenocytes isolated from CD112 KO or CD155
KO mice. In the absence of either one of the two DNAM-1-ligands on the stimulator cells,
allospecific T cell proliferation was not reduced, but rather enhanced compared to MHC-
matched controls (Fig 3D and 3G). In parallel, IFN-γ production was significantly increased,
when stimulators did not express CD155 or CD112 (Fig 3E and 3H). Finally, cytotoxicity of T
cells stimulated with either CD155 or CD112 KO splenocytes against primary wild type rTECs
did not significantly differ from those stimulated with WT spleocytes (Fig 3F and 3I).

Thus, DNAM-1 plays a significant costimulatory role during allospecific T cell priming, and
this process is not dependent on its classical ligands CD112 and CD155 on APC.

Allospecific T cell cytotoxicity against rTECs is independent of the
DNAM-1 pathway in vitro
According to previous reports, the DNAM-1 pathway is important for T cell-mediated killing
of non-professional APCs [9]. rTECs are considered important targets of allospecific cytotoxic
T cells during renal allograft rejection and act as non-professional APCs under inflammatory
conditions [26, 31]. Since they express both CD112 and CD155 after transplantation (Fig 2),
we aimed to asses the functional relevance of DNAM-1 signaling in allospecific cytotoxic activ-
ity against rTECs in the effector phase of the immune response. To this end, splenocytes were
first primed with fully MHC-mismatched splenocytes, after 5 days of culture their cytotoxic
activity against WT, CD155 or CD112 KO rTECs was measured in vitro.

Absence of CD112 or CD155 on the target cells did not alter the killing rate (Fig 4A and
4B). To exclude redundancy between both ligands, we used CD155 KO targets and added a
blocking antibody against CD112. Even if none of the two ligands was available for DNAM-1
binding, rTEC killing was not impaired (Fig 4C). Finally, to exclude the possibility of a third
unknown ligand binding to DNAM-1 we added the same antibody blocking DNAM-1, which
already exerted a significant effect when used during T cell priming (Fig 3). However, this did
not reduce allospecific killing of rTECs (Fig 4D), indicating that DNAM-1 is not essential for
the cytotoxic effector function of T cells against rTECs in vitro.
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Fig 3. Paradoxical effect of DNAM-1 blockade and CD155/CD112 deficiency. (A-C) Isolated CBA T cells were stimulated with irradiated B6 splenocytes.
CD8 or CD4 T cells were either cultured alone or in combination (ratio 1:2). An anti-DNAM-1 antibody (3B3) was added to the culture at 25 μg/ml. As control
an unspecific isotype control antibody was used at the same concentration. (A) Proliferation was measured on day 4 of culture. * P = 0.035, ** P<0.01. (B)
IFN-γ was measured in the supernatant from the same CD8+CD4 cultures. (C) Cytotoxicity of CBA splenocytes stimulated in the presence or absence of 3B3
(25 μg/ml) against IFN-stimulated B6WT rTECs was measured on day 5. (D-F) Isolated B6 T cells were stimulated with irradiated BALB/cWT or CD155 KO
splenocytes. CD8 or CD4 T cells were either cultured alone or in combination (ratio 1:2). (D) Proliferation was measured on day 4 of culture. ** P<0.01. (E)
IFN-γ was measured in the supernatant from the same CD8+CD4 cultures. (F) Cytotoxicity of the CD8+CD4 culture against IFN-stimulated WT BALB/c
rTECs was measured on day 5. (G-I) Isolated CBA T cells were stimulated with irradiated B6WT or CD112 KO splenocytes. CD8 or CD4 T cells were either
cultured alone or in combination (ratio 1:2). (G) Proliferation was measured on day 4 of culture. * P = 0.02. (H) IFN-γ was measured in the supernatant from
the same CD8+CD4 cocultures. (I) Cytotoxicity of CBA splenocytes stimulated with irradiatedWT B6 or CD112 KO splenocytes against IFN-stimulated WT
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Renal transplantation in DNAM-1 deficient mice
The specific role of DNAM-1 in kidney transplantation was investigated by transplanting fully
MHC-mismatched kidney allografts in DNAM-1 deficient mice. Renal transplantations were
performed in a non-life supporting manner, leaving the left kidney untouched and replacing
only the right kidney by the allograft. Seven days after non-life supporting kidney

B6 rTECs was measured on day 5. Data points represent mean values of triplicates. All experiments were performed at least 3 times. Representative figures
are displayed.

doi:10.1371/journal.pone.0147951.g003

Fig 4. Cytotoxic activity of allospecific T cells against rTECs is not DNAM-1 dependent in vitro. (A) CBA splenocytes were stimulated with irradiated
BALB/c splenocytes. Cytotoxicity against IFN-stimulated WT BALB/c or CD155 KO rTEC targets was measured on day 5 of coculture. (B) CBA splenocytes
were stimulated with irradiated B6 splenocytes. Cytotoxicity against IFN-stimulated WT or CD112 KO targets was measured on day 5 of coculture. (C) CBA
splenocytes were stimulated with irradiated BALB/c splenocytes. Cytotoxicity against IFN-stimulated CD155 KO rTEC targets in the presence (25 μg/ml) or
absence of a blocking anti-CD112 antibody was measured on day 5 of coculture. (D) CBA splenocytes were stimulated with irradiated B6 splenocytes.
Cytotoxicity against IFN-stimulated WT targets was measured on d 5 of coculture in the presence or absence of a blocking anti-DNAM-1 antibody (50 μg/ml).
Data points represent mean values of triplicates. All experiments were performed at least 3 times. Representative figures are displayed.

doi:10.1371/journal.pone.0147951.g004
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transplantation the second kidney was removed, and 3 days later renal graft function was esti-
mated by measurement of serum creatinine und urea. Additionally, the kidney grafts were har-
vested at day 10 after transplantation for histological analysis. On histological assessment
kidney allograft rejection according to Banff classification was not reduced in DNAM-1 KO
mice (4 grafts acute vascular cellular rejection Banff IIA, 1 graft with extensive acute tubular
necrosis) compared to controls (2 grafts with borderline changes, 1 graft acute tubulointerstitial
cellular rejection Banff IA, 2 grafts IIA, 2 grafts with extensive tubular necrosis). Serum creati-
nine and BUN did not significantly differ between the two groups, but a trend towards a better
renal function in DNAM-1 deficient mice was observed after exclusion of kidney grafts with
histological evidence for extensive tubular necrosis (mostly related to surgical complications)
(mean BUN 97.5 ± 42.1 mg/dl in DNAM-1 KO and 167.2 ± 48.4 mg/dl in WT, p = 0.36, Fig 5).
Thus, absence of DNAM-1 did not prevent, but might moderately mitigate rejection after renal
transplantation.

Transplantation of CD112 or CD155 deficient allografts
For a comprehensive analysis of this costimulatory pathway in kidney transplantation, we
additionally performed transplantation of kidney grafts harvested from CD112 and CD155
deficient mice into MHCmismatched recipients. Renal transplantations were performed in a
non-life supporting manner. Allografts harvested on day 21 showed severe rejection with infil-
trates in the interstitium and tubulitis. In addition, all allografts demonstrated vascular lesions
classifying them to Banff grade II or III rejections. These findings were independent of the
expression of CD155 or CD112 in the allograft (Fig 6A and 6B). The amount of apoptotic epi-
thelial cells representing an in vivo estimate for the strength of cytotoxic activity was not differ-
ent, when comparing CD155 or CD112 KO allografts with their respective WT controls (Fig
6C). The absence of a significant functional relevance for CD112 and CD155 in solid allograft
was additionally confirmed in a skin transplantation model using a fully MHC-mismatched
and a less-stringent single antigen mismatch combination (S1 Fig). Unexpectedly, we observed
a high incidence of infarcts and subsequent development of necrosis in allografts lacking
CD155 or CD112. Quantification of the necrotic areas in the H&E stained slides revealed a sig-
nificant difference when comparing WT versus DNAM-1 ligand KO allografts (Fig 6D).

Discussion
The identification of costimulatory pathways with a functional relevance in allogeneic immune
responses is important for the definition of novel pharmacological targets to prevent allograft
rejection. We took advantage of our mouse kidney transplantation model to investigate the
role of T cell costimulation via DNAM-1 in renal transplantation by using gene-targeted mice.
We found that in allogeneic immune responses the DNAM-1 signaling pathway is involved in
T cell priming, but not in the effector phase of the immune response. Although CD112 and
CD155 were highly expressed in kidney allografts, blocking the DNAM-1 pathway did not pre-
vent rejection of kidney allografts.

Previous studies suggested a role for the DNAM-1/CD155-interaction during T cell priming
either to a nominal antigen [9] or allospecifically [21]. Consistent with these results we detected
reduced proliferation, cytokine production, and subsequent lower cytotoxic activity against
rTECs, when DNAM-1 was blocked during the stimulation of T cells. This was true for both
CD4 and CD8 T cells. This effect, however, was independent of the expression of CD112 or
CD155 on the stimulator cells. This finding is in line with previous reports demonstrating a
role for DNAM-1 signaling in LFA-1 mediated T cell activation [6]. When using CD155 or
CD112 deficient cells as stimulators in proliferation and cytotoxicity assays in vitro, we
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observed a paradoxically enhanced proliferation and cytokine production. Furthermore, in a
single MHC I antigen mismatched skin transplantation model allograft rejection was acceler-
ated, when CD112 was not expressed on donor skin. These results indicate a regulatory role of
CD155 and CD112 during the process of T cell priming. Indeed, blocking CD155 on human
vascular endothelial cells augmented the acquisition of effector functions by CD8 T cells [32].
Furthermore, in a GVHDmodel mortality was increased in CD155 KO recipients [33]. These
findings might be explained by the effect of TIGIT. TIGIT is expressed on activated T cells and
triggers an inhibitory signal upon binding to CD155 or CD112 [18, 19]. When CD155 or
CD112 are missing on the stimulator cells, binding and triggering of TIGIT is also abrogated
possibly leading to a stronger T cell response. The exact mechanism for this phenomenon has
still to be elucidated. Alternatively, absence of CD155 on stimulator cells also may prevent an
inhibitory influence of CD96 that was shown recently to counteract CD226 driven activation.

The lack of a significant role for DNAM-1 pathway in kidney transplantation is quite sur-
prising, since DNAM-1 and its ligands CD155 and CD112 are important in NK and T cell
mediated anti-tumor activity [4, 8, 34] and play a role in graft versus host disease [11, 22]. Our
interest for this particular pathway in kidney transplantation came out in consideration of the
role of DNAM-1/CD155 interaction for the cytotoxic activity of T cells against non-profes-
sional APCs [9]. Since rTECs can act as non-professional APCs under inflammatory condi-
tions and expressed both CD112 and CD155, we postulated a critical role for this pathway in

Fig 5. Renal allograft function in DNAM-1 deficient recipients. Renal transplantation was performed in
two steps. First, fully MHC-mismatched CBA kidney allografts were transplanted into WT BALB/c or DNAM-1
deficient mice. The second kidney was removed 7 days after surgery and 3 days later renal graft function was
estimated by measurement of serum creatinine und urea. Mean BUNWT 167.2 ± 48.4 mg/dl vs. DNAM1-KO
97.5 ± 42.1 mg/dl, P = 0.36. One mouse in the DNAM1-KO group and 2 mice in the WT group had to be
excluded because of surgical complications. Thus, in the final analysis 6 mice were included in theWT group
and 4 in the DNAM1-KO group.

doi:10.1371/journal.pone.0147951.g005
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Fig 6. Similar rejection but higher rate of infarcts in renal allografts from CD155 or CD112 KO donors. Renal allografts were performed in a non-life
supporting manner. All allografts were harvested on day 21. Strain combinations were fully MHC-mismatched: (A) BALB/cWT (n = 5) or CD155 KO (n = 5)
into B6 and (B) B6WT (n = 5) or CD112 KO (n = 3) into CBA. Representative H & E stainings are shown. All allografts displayed severe interstitial infiltrates
as well as tubulitis in more than 50% of the graft. Furthermore, arteritis was detected in all grafts classifying them to Banff grade II or III. The chosen pictures
are taken from allografts with the following Banff grades: (A) BALB/c to B6: IIA; CD155 KO to B6: IIB; (B) B6 to CBA: IIB; CD112 to CBA: III (scale bar
200 μm). (C) Apoptotic cells in renal allografts were detected by immunohistochemical staining for ssDNA. (D) Representative picture of a necrotic area in an
H & E slide of a CD155 KO renal allograft (scale bar 1200 μm). (E) The area of necrotic tissue in H & E stained slides from renal allografts was detected by
scanning them at a resolution of 0.23 μm. Quantification was performed using NDPView software. Groups were compared using the Mann-Whitney-test.

doi:10.1371/journal.pone.0147951.g006
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kidney allograft rejection. Although a modest (statistically not significant) benefit in kidney
transplant function was observed in DNAM-1 deficient recipient (Fig 5), overall, inhibition of
the DNAM-1 pathway exerted only a mild effect on allograft rejection. The small number of
DNAM-1 KO mice available for kidney transplantation and some experimental variability
inevitably related to the complex surgical model preclude a conclusive interpretation of the
functional data based on creatinine and BUN levels. Moreover, although the histological exam-
ination of the grafts did not show any difference in cellular infiltrates between DNAM-1 and
wild type recipients, immunological tests to specifically assess T cell activation and functional
activity might be useful for a better characterization of the DNAM-1 pathway in vivo. However,
we conclude that the the effect of DNAM-1 on T cell priming is of limited functional relevance
in the complex immune reaction triggered by kidney transplantation. Since T cell activation
after kidney transplantation is primarily mediated by donor-derived professional APCs evad-
ing the graft, other costimulatory molecules might be sufficient for a full T cell activation and
DNAM-1 might be redundant in this setting. Also the postulated role of CD112 and CD155 for
cytotoxic effector function was not confirmed in vitro and in vivo under the experimental con-
ditions applied in this study.

Furthermore, we unexpectedly observed a higher incidence of ischemic infarcts in CD155
or CD112 deficient allografts compared to their WT controls. Taking into account the pivotal
role of nectins in cell-cell adhesion, a less efficient endothelial recovery might predispose those
grafts to thrombosis. CD155 is located on the leading edge of moving cells and continues to
sustain mobility until contacting another cell [14]. Thus, when ischemia-reperfusion injury
causes endothelial damage [35], this might be repaired less efficiently in renal allografts from
CD155 and CD112 KO donors. Gaps in the endothelial layer may then expose the subendothe-
lial layer, allow platelet activation and adhesion, and promote clotting of the vessel [36].

Taken together our results suggest a limited role for DNAM-1 in solid allograft rejection.
Blocking DNAM-1 is not sufficient to prevent allograft rejection and might be relevant only in
combination with additional inhibitors of costimulation. Furthermore, blockade of one of its
ligands may even be detrimental after transplantation because of non-immunological functions
of CD112 and CD155.

Supporting Information
S1 Fig. Absence of DNAM-1 ligands does not prolong skin allograft survival. (A) Skin grafts
from fully MHC-mismatchedWT BALB/c (n = 19) or CD155 KO (n = 24) donors were per-
formed on B6 recipients. Median survival time: 9 vs. 10 days (WT vs. CD155 KO). (B) Skin
grafts fromWT BALB/c (n = 7) or CD155 KO (n = 8) donors were performed on minor antigen
mismatched DBA/2 recipients. Median survival time: 13 vs. 15 days (WT vs. CD155 KO). (C)
Skin grafts from fully MHC-mismatchedWT B6 (n = 8) or CD112 KO (n = 8) donors were per-
formed on CBA recipients. Median survival time: 11 vs. 12 days (WT vs. CD112 KO). (D) Skin
grafts fromMHC I antigen mismatched B6 (n = 7) or CD112 (n = 8) donors were performed on
bm1 recipients. Median survival time: 25.5 vs. 21 days (WT vs. CD112 KO, P = 0.01).
(TIF)
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